AWS Sagemaker Orchestrator

Orchestrating your pipelines to run on Amazon Sagemaker.

This is an older version of the ZenML documentation. To read and view the latest version please visit this up-to-date URL.

AWS Sagemaker Orchestrator

Sagemaker Pipelines is a serverless ML workflow tool running on AWS. It is an easy way to quickly run your code in a production-ready, repeatable cloud orchestrator that requires minimal setup without provisioning and paying for standby compute.

This component is only meant to be used within the context of a remote ZenML deployment scenario. Usage with a local ZenML deployment may lead to unexpected behavior!

When to use it

You should use the Sagemaker orchestrator if:

  • you're already using AWS.

  • you're looking for a proven production-grade orchestrator.

  • you're looking for a UI in which you can track your pipeline runs.

  • you're looking for a managed solution for running your pipelines.

  • you're looking for a serverless solution for running your pipelines.

How it works

The ZenML Sagemaker orchestrator works with Sagemaker Pipelines, which can be used to construct machine learning pipelines. Under the hood, for each ZenML pipeline step, it creates a SageMaker PipelineStep, which contains a Sagemaker Processing job. Currently, other step types are not supported.

How to deploy it

In order to use a Sagemaker AI orchestrator, you need to first deploy ZenML to the cloud. It would be recommended to deploy ZenML in the same region as you plan on using for Sagemaker, but it is not necessary to do so. You must ensure that you are connected to the remote ZenML server before using this stack component.

The only other thing necessary to use the ZenML Sagemaker orchestrator is enabling the relevant permissions for your particular role.

In order to quickly enable APIs, and create other resources necessary for to use this integration, we will soon provide a Sagemaker stack recipe via our mlstacks repository, which will help you set up the infrastructure with one click.

Infrastructure Deployment

A Sagemaker orchestrator can be deployed directly from the ZenML CLI:

zenml orchestrator deploy sagemaker_orchestrator --flavor=sagemaker --provider=aws ...

You can pass other configurations specific to the stack components as key-value arguments. If you don't provide a name, a random one is generated for you. For more information about how to work use the CLI for this, please refer to the dedicated documentation section.

How to use it

To use the Sagemaker orchestrator, we need:

  • The ZenML aws and s3 integrations installed. If you haven't done so, run

zenml integration install aws s3
  • Docker installed and running.

  • A remote artifact store as part of your stack (configured with an authentication_secret attribute).

  • A remote container registry as part of your stack.

  • An IAM role or user with an AmazonSageMakerFullAccess managed policy applied to it as well as sagemaker.amazonaws.com added as a Principal Service. Full details on these permissions can be found here or use the ZenML recipe (when available) which will set up the necessary permissions for you.

  • The local client (whoever is running the pipeline) will also have to have the necessary permissions or roles to be able to launch Sagemaker jobs. (This would be covered by the AmazonSageMakerFullAccess policy suggested above.)

We can then register the orchestrator and use it in our active stack:

zenml orchestrator register <ORCHESTRATOR_NAME> \
    --flavor=sagemaker --execution_role=<YOUR_ROLE_ARN>

# Register and activate a stack with the new orchestrator
zenml stack register <STACK_NAME> -o <ORCHESTRATOR_NAME> ... --set

ZenML will build a Docker image called <CONTAINER_REGISTRY_URI>/zenml:<PIPELINE_NAME> which includes your code and use it to run your pipeline steps in Sagemaker. Check out this page if you want to learn more about how ZenML builds these images and how you can customize them.

You can now run any ZenML pipeline using the Sagemaker orchestrator:

python file_that_runs_a_zenml_pipeline.py

Sagemaker UI

Sagemaker comes with its own UI that you can use to find further details about your pipeline runs, such as the logs of your steps.

To access the Sagemaker Pipelines UI, you will have to launch Sagemaker Studio via the AWS Sagemaker UI. Make sure that you are launching it from within your desired AWS region.

Once the Studio UI has launched, click on the 'Pipeline' button on the left side. From there you can view the pipelines that have been launched via ZenML:

Run pipelines on a schedule

The ZenML Sagemaker orchestrator doesn't currently support running pipelines on a schedule. We maintain a public roadmap for ZenML, which you can find here. We welcome community contributions (see more here) so if you want to enable scheduling for Sagemaker, please do let us know!

Configuration at pipeline or step level

When running your ZenML pipeline with the Sagemaker orchestrator, the configuration set when configuring the orchestrator as a ZenML component will be used by default. However, it is possible to provide additional configuration at the pipeline or step level. This allows you to run whole pipelines or individual steps with alternative configurations. For example, this allows you to run the training process with a heavier, GPU-enabled instance type, while running other steps with lighter instances.

Additional configuration for the Sagemaker orchestrator can be passed via SagemakerOrchestratorSettings. Here, it is possible to configure processor_args, which is a dictionary of arguments for the Processor. For available arguments, see the Sagemaker documentation . Currently, it is not possible to provide custom configuration for the following attributes:

  • image_uri

  • instance_count

  • sagemaker_session

  • entrypoint

  • base_job_name

  • env

For example, settings can be provided in the following way:

sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
    processor_args={
        "instance_type": "ml.t3.medium",
        "volume_size_in_gb": 30
    }
)

They can then be applied to a step as follows:

@step(settings={"orchestrator.sagemaker": sagemaker_orchestrator_settings})

For example, if your ZenML component is configured to use ml.c5.xlarge with 400GB additional storage by default, all steps will use it except for the step above, which will use ml.t3.medium with 30GB additional storage.

Check out this docs page for more information on how to specify settings in general.

For more information and a full list of configurable attributes of the Sagemaker orchestrator, check out the API Docs .

S3 data access in ZenML steps

In Sagemaker jobs, it is possible to access data that is located in S3. Similarly, it is possible to write data from a job to a bucket. The ZenML Sagemaker orchestrator supports this via the SagemakerOrchestratorSettings and hence at component, pipeline, and step levels.

Import: S3 -> job

Importing data can be useful when large datasets are available in S3 for training, for which manual copying can be cumbersome. Sagemaker supports File (default) and Pipe mode, with which data is either fully copied before the job starts or piped on the fly. See the Sagemaker documentation referenced above for more information about these modes.

Note that data import and export can be used jointly with processor_args for maximum flexibility.

A simple example of importing data from S3 to the Sagemaker job is as follows:

sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
    input_data_s3_mode="File",
    input_data_s3_uri="s3://some-bucket-name/folder"
)

In this case, data will be available at /opt/ml/processing/input/data within the job.

It is also possible to split your input over channels. This can be useful if the dataset is already split in S3, or maybe even located in different buckets.

sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
    input_data_s3_mode="File",
    input_data_s3_uri={
        "train": "s3://some-bucket-name/training_data",
        "val": "s3://some-bucket-name/validation_data",
        "test": "s3://some-other-bucket-name/testing_data"
    }
)

Here, the data will be available in /opt/ml/processing/input/data/train, /opt/ml/processing/input/data/val and /opt/ml/processing/input/data/test.

In the case of using Pipe for input_data_s3_mode, a file path specifying the pipe will be available as per the description written here . An example of using this pipe file within a Python script can be found here .

Export: job -> S3

Data from within the job (e.g. produced by the training process, or when preprocessing large data) can be exported as well. The structure is highly similar to that of importing data. Copying data to S3 can be configured with output_data_s3_mode, which supports EndOfJob (default) and Continuous.

In the simple case, data in /opt/ml/processing/output/data will be copied to S3 at the end of a job:

sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
    output_data_s3_mode="EndOfJob",
    output_data_s3_uri="s3://some-results-bucket-name/results"
)

In a more complex case, data in /opt/ml/processing/output/data/metadata and /opt/ml/processing/output/data/checkpoints will be written away continuously:

sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
    output_data_s3_mode="Continuous",
    output_data_s3_uri={
        "metadata": "s3://some-results-bucket-name/metadata",
        "checkpoints": "s3://some-results-bucket-name/checkpoints"
    }
)

Enabling CUDA for GPU-backed hardware

Note that if you wish to use this orchestrator to run steps on a GPU, you will need to follow the instructions on this page to ensure that it works. It requires adding some extra settings customization and is essential to enable CUDA for the GPU to give its full acceleration.

Last updated