Google Cloud Storage (GCS)

Storing artifacts using GCP Cloud Storage.

The GCS Artifact Store is an Artifact Store flavor provided with the GCP ZenML integration that uses the Google Cloud Storage managed object storage service to store ZenML artifacts in a GCP Cloud Storage bucket.

When would you want to use it?

Running ZenML pipelines with the local Artifact Store is usually sufficient if you just want to evaluate ZenML or get started quickly without incurring the trouble and the cost of employing cloud storage services in your stack. However, the local Artifact Store becomes insufficient or unsuitable if you have more elaborate needs for your project:

  • if you want to share your pipeline run results with other team members or stakeholders inside or outside your organization

  • if you have other components in your stack that are running remotely (e.g. a Kubeflow or Kubernetes Orchestrator running in a public cloud).

  • if you outgrow what your local machine can offer in terms of storage space and need to use some form of private or public storage service that is shared with others

  • if you are running pipelines at scale and need an Artifact Store that can handle the demands of production-grade MLOps

In all these cases, you need an Artifact Store that is backed by a form of public cloud or self-hosted shared object storage service.

You should use the GCS Artifact Store when you decide to keep your ZenML artifacts in a shared object storage and if you have access to the Google Cloud Storage managed service. You should consider one of the other Artifact Store flavors if you don't have access to the GCP Cloud Storage service.

How do you deploy it?

Don't want to deploy the artifact store manually? Check out the easy cloud deployment wizard or the easy cloud registration wizard for a shortcut on how to deploy & register this stack component.

The GCS Artifact Store flavor is provided by the GCP ZenML integration, you need to install it on your local machine to be able to register a GCS Artifact Store and add it to your stack:

zenml integration install gcp -y

The only configuration parameter mandatory for registering a GCS Artifact Store is the root path URI, which needs to point to a GCS bucket and take the form gs://bucket-name. Please read the Google Cloud Storage documentation on how to configure a GCS bucket.

With the URI to your GCS bucket known, registering a GCS Artifact Store can be done as follows:

# Register the GCS artifact store
zenml artifact-store register gs_store -f gcp --path=gs://bucket-name

# Register and set a stack with the new artifact store
zenml stack register custom_stack -a gs_store ... --set

Depending on your use case, however, you may also need to provide additional configuration parameters pertaining to authentication to match your deployment scenario.

Infrastructure Deployment

A GCS Artifact Store can be deployed directly from the ZenML CLI:

zenml artifact-store deploy gcs_artifact_store --flavor=gcp --provider=gcp ...

You can pass other configurations specific to the stack components as key-value arguments. If you don't provide a name, a random one is generated for you. For more information about how to work use the CLI for this, please refer to the dedicated documentation section.

Authentication Methods

Integrating and using a GCS Artifact Store in your pipelines is not possible without employing some form of authentication. If you're looking for a quick way to get started locally, you can use the Implicit Authentication method. However, the recommended way to authenticate to the GCP cloud platform is through a GCP Service Connector. This is particularly useful if you are configuring ZenML stacks that combine the GCS Artifact Store with other remote stack components also running in GCP.

This method uses the implicit GCP authentication available in the environment where the ZenML code is running. On your local machine, this is the quickest way to configure a GCS Artifact Store. You don't need to supply credentials explicitly when you register the GCS Artifact Store, as it leverages the local credentials and configuration that the Google Cloud CLI stores on your local machine. However, you will need to install and set up the Google Cloud CLI on your machine as a prerequisite, as covered in the Google Cloud documentation , before you register the GCS Artifact Store.

Certain dashboard functionality, such as visualizing or deleting artifacts, is not available when using an implicitly authenticated artifact store together with a deployed ZenML server because the ZenML server will not have permission to access the filesystem.

The implicit authentication method also needs to be coordinated with other stack components that are highly dependent on the Artifact Store and need to interact with it directly to the function. If these components are not running on your machine, they do not have access to the local Google Cloud CLI configuration and will encounter authentication failures while trying to access the GCS Artifact Store:

  • Orchestrators need to access the Artifact Store to manage pipeline artifacts

  • Step Operators need to access the Artifact Store to manage step-level artifacts

  • Model Deployers need to access the Artifact Store to load served models

To enable these use cases, it is recommended to use a GCP Service Connector to link your GCS Artifact Store to the remote GCS bucket.

For more, up-to-date information on the GCS Artifact Store implementation and its configuration, you can have a look at the SDK docs .

How do you use it?

Aside from the fact that the artifacts are stored in GCP Cloud Storage, using the GCS Artifact Store is no different from using any other flavor of Artifact Store.

Last updated