๐ŸšจTrigger a pipeline

There are numerous ways to trigger a pipeline, apart from calling the runner script.

A pipeline can be run via Python like this:

@step  # Just add this decorator
def load_data() -> dict:
    training_data = [[1, 2], [3, 4], [5, 6]]
    labels = [0, 1, 0]
    return {'features': training_data, 'labels': labels}

def train_model(data: dict) -> None:
    total_features = sum(map(sum, data['features']))
    total_labels = sum(data['labels'])

    # Train some model here

    print(f"Trained model using {len(data['features'])} data points. "
          f"Feature sum is {total_features}, label sum is {total_labels}")

@pipeline  # This function combines steps together 
def simple_ml_pipeline():
    dataset = load_data()

You can now run this pipeline by simply calling the function:


However, there are other ways to trigger a pipeline, specifically a pipeline with a remote stack (remote orchestrator, artifact store, and container registry).

Last updated