Contribute flavors or components
Creating your custom stack component solutions.
Before you can start contributing, it is important to know that the stack component deploy CLI also makes use of the stack recipes (specifically, the modular stack recipes) in the background. Thus, contributing a new deployment option for both the deployment methods that we have seen, involves making a contribution to the base recipe.
You can refer to the
CONTRIBUTING.md
on the mlstacks
repo to get an overview of how all recipes are designed in general but here are instructions for contributing to the modular recipes specifically.- Every file inside the modular recipes represents a tool and all code pertaining to the deployment of it resides there. Create a new file with a name that reflects what would be deployed.
- Populate this file with all the terraform code that is relevant to the component. Make sure any dependencies are also included in the same file.
- Add any local values that you might need here to the
locals.tf
file. - If you want to enable users to set any configuration parameters through the CLI, add those variables to the
variables.tf
file. You can take a look at existing variables likemlflow_bucket
to get an idea of how to do this. - Now, add a variable that allows the user to enable this service, to the
variables.tf
file. The format for the name isenable_<STACK_COMPONENT>_<FLAVOR>
- You also need to populate the
outputs.tf
file with information that a stack component registration for your new component might need. This is used by the stack component deploy CLI. - Add a block to the
output_file.tf
file that corresponds to your component. This is the file that gets generated on a successfulstack deploy
event and can be imported as a ZenML stack. - Finally, contribute a PR back to
develop
! 🥳
Once merged, this should allow other people to use your new component while deploying through the
zenml stack deploy
flow. To enable integration with the stack component deploy CLI, you need to also contribute to the zenml-io/zenml
repo.To enable the stack component deploy CLI to work with your new component, you need to add a new flag to the
deploy_stack_component_command
in the src/zenml/cli/stack_components.py
file.From the
mlstacks
side, this will also require an update to the validation logic inside the mlstacks
repository, starting with updating enums and constants in the base of the src/mlstacks
directory.If you have any further questions or need help navigating changes that are required, please do reach out to us on Slack! Happy contributing! 🥰

Last modified 7d ago