LogoLogo
ProductResourcesGitHubStart free
  • Documentation
  • Learn
  • ZenML Pro
  • Stacks
  • API Reference
  • SDK Reference
  • Overview
  • Starter guide
    • Create an ML pipeline
    • Cache previous executions
    • Manage artifacts
    • Track ML models
    • A starter project
  • Production guide
    • Deploying ZenML
    • Understanding stacks
    • Connecting remote storage
    • Orchestrate on the cloud
    • Configure your pipeline to add compute
    • Configure a code repository
    • Set up CI/CD
    • An end-to-end project
  • LLMOps guide
    • RAG with ZenML
      • RAG in 85 lines of code
      • Understanding Retrieval-Augmented Generation (RAG)
      • Data ingestion and preprocessing
      • Embeddings generation
      • Storing embeddings in a vector database
      • Basic RAG inference pipeline
    • Evaluation and metrics
      • Evaluation in 65 lines of code
      • Retrieval evaluation
      • Generation evaluation
      • Evaluation in practice
    • Reranking for better retrieval
      • Understanding reranking
      • Implementing reranking in ZenML
      • Evaluating reranking performance
    • Improve retrieval by finetuning embeddings
      • Synthetic data generation
      • Finetuning embeddings with Sentence Transformers
      • Evaluating finetuned embeddings
    • Finetuning LLMs with ZenML
      • Finetuning in 100 lines of code
      • Why and when to finetune LLMs
      • Starter choices with finetuning
      • Finetuning with 🤗 Accelerate
      • Evaluation for finetuning
      • Deploying finetuned models
      • Next steps
  • Tutorials
    • Managing scheduled pipelines
    • Trigger pipelines from external systems
    • Hyper-parameter tuning
    • Inspecting past pipeline runs
    • Train with GPUs
    • Running notebooks remotely
    • Managing machine learning datasets
    • Handling big data
  • Best practices
    • 5-minute Quick Wins
    • Keep Your Dashboard Clean
    • Configure Python environments
    • Shared Components for Teams
    • Organizing Stacks Pipelines Models
    • Access Management
    • Setting up a Project Repository
    • Infrastructure as Code with Terraform
    • Creating Templates for ML Platform
    • Using VS Code extension
    • Leveraging MCP
    • Debugging and Solving Issues
    • Choosing an Orchestrator
  • Examples
    • Quickstart
    • End-to-End Batch Inference
    • Basic NLP with BERT
    • Computer Vision with YoloV8
    • LLM Finetuning
    • More Projects...
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub

Starter guide

Kickstart your journey into MLOps with the essentials of ZenML.

PreviousOverviewNextCreate an ML pipeline

Last updated 3 months ago

Was this helpful?

Welcome to the ZenML Starter Guide! If you're an MLOps engineer aiming to build robust ML platforms, or a data scientist interested in leveraging the power of MLOps, this is the perfect place to begin. Our guide is designed to provide you with the foundational knowledge of the ZenML framework and equip you with the initial tools to manage the complexity of machine learning operations.

Throughout this guide, we'll cover essential topics including:

  • Creating your first ML pipeline

  • Understanding caching between pipeline steps

  • Managing data and data versioning

  • Tracking your machine learning models

Before jumping in, make sure you have a Python environment ready and virtualenv installed to follow along with ease. By the end, you will have completed a starter project, marking the beginning of your journey into MLOps with ZenML.

Let this guide be not only your introduction to ZenML but also a foundational asset in your MLOps toolkit. Prepare your development environment, and let's get started!

Throughout this guide, we will be referencing internal ZenML functions and classes, which are more easily discoverable in the SDK Docs. Consult the SDK docs if you're ever stuck!

ZenML Scarf
Embarking on MLOps can be intricate. ZenML simplifies the journey.