LogoLogo
ProductResourcesGitHubStart free
  • Documentation
  • Learn
  • ZenML Pro
  • Stacks
  • API Reference
  • SDK Reference
  • Overview
  • Integrations
  • Stack Components
    • Orchestrators
      • Local Orchestrator
      • Local Docker Orchestrator
      • Kubeflow Orchestrator
      • Kubernetes Orchestrator
      • Google Cloud VertexAI Orchestrator
      • AWS Sagemaker Orchestrator
      • AzureML Orchestrator
      • Databricks Orchestrator
      • Tekton Orchestrator
      • Airflow Orchestrator
      • Skypilot VM Orchestrator
      • HyperAI Orchestrator
      • Lightning AI Orchestrator
      • Develop a custom orchestrator
    • Artifact Stores
      • Local Artifact Store
      • Amazon Simple Cloud Storage (S3)
      • Google Cloud Storage (GCS)
      • Azure Blob Storage
      • Develop a custom artifact store
    • Container Registries
      • Default Container Registry
      • DockerHub
      • Amazon Elastic Container Registry (ECR)
      • Google Cloud Container Registry
      • Azure Container Registry
      • GitHub Container Registry
      • Develop a custom container registry
    • Step Operators
      • Amazon SageMaker
      • AzureML
      • Google Cloud VertexAI
      • Kubernetes
      • Modal
      • Spark
      • Develop a Custom Step Operator
    • Experiment Trackers
      • Comet
      • MLflow
      • Neptune
      • Weights & Biases
      • Google Cloud VertexAI Experiment Tracker
      • Develop a custom experiment tracker
    • Image Builders
      • Local Image Builder
      • Kaniko Image Builder
      • AWS Image Builder
      • Google Cloud Image Builder
      • Develop a Custom Image Builder
    • Alerters
      • Discord Alerter
      • Slack Alerter
      • Develop a Custom Alerter
    • Annotators
      • Argilla
      • Label Studio
      • Pigeon
      • Prodigy
      • Develop a Custom Annotator
    • Data Validators
      • Great Expectations
      • Deepchecks
      • Evidently
      • Whylogs
      • Develop a custom data validator
    • Feature Stores
      • Feast
      • Develop a Custom Feature Store
    • Model Deployers
      • MLflow
      • Seldon
      • BentoML
      • Hugging Face
      • Databricks
      • vLLM
      • Develop a Custom Model Deployer
    • Model Registries
      • MLflow Model Registry
      • Develop a Custom Model Registry
  • Service Connectors
    • Introduction
    • Complete guide
    • Best practices
    • Connector Types
      • Docker Service Connector
      • Kubernetes Service Connector
      • AWS Service Connector
      • GCP Service Connector
      • Azure Service Connector
      • HyperAI Service Connector
  • Popular Stacks
    • AWS
    • Azure
    • GCP
    • Kubernetes
  • Deployment
    • 1-click Deployment
    • Terraform Modules
    • Register a cloud stack
    • Infrastructure as code
  • Contribute
    • Custom Stack Component
    • Custom Integration
Powered by GitBook
On this page
  • When to use it
  • How to deploy it
  • How to find the registry URI
  • How to use it

Was this helpful?

Edit on GitHub
  1. Stack Components
  2. Container Registries

DockerHub

Storing container images in DockerHub.

PreviousDefault Container RegistryNextAmazon Elastic Container Registry (ECR)

Last updated 7 days ago

Was this helpful?

The DockerHub container registry is a flavor that comes built-in with ZenML and uses to store container images.

When to use it

You should use the DockerHub container registry if:

  • one or more components of your stack need to pull or push container images.

  • you have a DockerHub account. If you're not using DockerHub, take a look at the other .

How to deploy it

To use the DockerHub container registry, all you need to do is create a account.

When this container registry is used in a ZenML stack, the Docker images that are built will be published in a ** public** repository and everyone will be able to pull your images. If you want to use a private repository instead, you'll have to on the website before running the pipeline. The repository name depends on the remote or that you're using in your stack.

How to find the registry URI

The DockerHub container registry URI should have one of the two following formats:

<ACCOUNT_NAME>
# or
docker.io/<ACCOUNT_NAME>

# Examples:
zenml
my-username
docker.io/zenml
docker.io/my-username

To figure out the URI for your registry:

  • Use the account name to fill the template docker.io/<ACCOUNT_NAME> and get your URI.

How to use it

To use the DockerHub container registry, we need:

We can then register the container registry and use it in our active stack:

zenml container-registry register <NAME> \
    --flavor=dockerhub \
    --uri=<REGISTRY_URI>

# Add the container registry to the active stack
zenml stack update -c <NAME>
docker login

Find out the account name of your account.

installed and running.

The registry URI. Check out the on the URI format and how to get the URI for your registry.

Additionally, we'll need to log in to the container registry so Docker can pull and push images. This will require your DockerHub account name and either your password or preferably a .

DockerHub
Docker
personal access token
previous section
container registry
DockerHub
DockerHub
create a private repository
orchestrator
step operator
container registry flavors
ZenML Scarf