LogoLogo
ProductResourcesGitHubStart free
  • Documentation
  • Learn
  • ZenML Pro
  • Stacks
  • API Reference
  • SDK Reference
  • Overview
  • Integrations
  • Stack Components
    • Orchestrators
      • Local Orchestrator
      • Local Docker Orchestrator
      • Kubeflow Orchestrator
      • Kubernetes Orchestrator
      • Google Cloud VertexAI Orchestrator
      • AWS Sagemaker Orchestrator
      • AzureML Orchestrator
      • Databricks Orchestrator
      • Tekton Orchestrator
      • Airflow Orchestrator
      • Skypilot VM Orchestrator
      • HyperAI Orchestrator
      • Lightning AI Orchestrator
      • Develop a custom orchestrator
    • Artifact Stores
      • Local Artifact Store
      • Amazon Simple Cloud Storage (S3)
      • Google Cloud Storage (GCS)
      • Azure Blob Storage
      • Develop a custom artifact store
    • Container Registries
      • Default Container Registry
      • DockerHub
      • Amazon Elastic Container Registry (ECR)
      • Google Cloud Container Registry
      • Azure Container Registry
      • GitHub Container Registry
      • Develop a custom container registry
    • Step Operators
      • Amazon SageMaker
      • AzureML
      • Google Cloud VertexAI
      • Kubernetes
      • Modal
      • Spark
      • Develop a Custom Step Operator
    • Experiment Trackers
      • Comet
      • MLflow
      • Neptune
      • Weights & Biases
      • Google Cloud VertexAI Experiment Tracker
      • Develop a custom experiment tracker
    • Image Builders
      • Local Image Builder
      • Kaniko Image Builder
      • AWS Image Builder
      • Google Cloud Image Builder
      • Develop a Custom Image Builder
    • Alerters
      • Discord Alerter
      • Slack Alerter
      • Develop a Custom Alerter
    • Annotators
      • Argilla
      • Label Studio
      • Pigeon
      • Prodigy
      • Develop a Custom Annotator
    • Data Validators
      • Great Expectations
      • Deepchecks
      • Evidently
      • Whylogs
      • Develop a custom data validator
    • Feature Stores
      • Feast
      • Develop a Custom Feature Store
    • Model Deployers
      • MLflow
      • Seldon
      • BentoML
      • Hugging Face
      • Databricks
      • vLLM
      • Develop a Custom Model Deployer
    • Model Registries
      • MLflow Model Registry
      • Develop a Custom Model Registry
  • Service Connectors
    • Introduction
    • Complete guide
    • Best practices
    • Connector Types
      • Docker Service Connector
      • Kubernetes Service Connector
      • AWS Service Connector
      • GCP Service Connector
      • Azure Service Connector
      • HyperAI Service Connector
  • Popular Stacks
    • AWS
    • Azure
    • GCP
    • Kubernetes
  • Deployment
    • 1-click Deployment
    • Terraform Modules
    • Register a cloud stack
    • Infrastructure as code
  • Contribute
    • Custom Stack Component
    • Custom Integration
Powered by GitBook
On this page
  • When to use it
  • Container Registry Flavors

Was this helpful?

Edit on GitHub
  1. Stack Components

Container Registries

Setting up a storage for Docker images.

PreviousDevelop a custom artifact storeNextDefault Container Registry

Last updated 1 month ago

Was this helpful?

The container registry is an essential part of most remote MLOps stacks. It is used to store container images that are built to run machine learning pipelines in remote environments. Containerization of the pipeline code creates a portable environment that allows code to run in an isolated manner.

When to use it

The container registry is needed whenever other components of your stack need to push or pull container images. Currently, this is the case for most of ZenML's remote , , and some . These containerize your pipeline code and therefore require a container registry to store the resulting images. Take a look at the documentation page of the component you want to use in your stack to see if it requires a container registry or even a specific container registry flavor.

Container Registry Flavors

ZenML comes with a few container registry flavors that you can use:

  • Default flavor: Allows any URI without validation. Use this if you want to use a local container registry or when using a remote container registry that is not covered by other flavors.

  • Specific flavors: Validates your container registry URI and performs additional checks to ensure you're able to push to the registry.

We highly suggest using the specific container registry flavors in favor of the default one to make use of the additional URI validations.

Container Registry
Flavor
Integration
URI example

default

built-in

-

dockerhub

built-in

docker.io/zenml

gcp

built-in

gcr.io/zenml

azure

built-in

zenml.azurecr.io

github

built-in

ghcr.io/zenml

aws

aws

123456789.dkr.ecr.us-east-1.amazonaws.com

If you would like to see the available flavors of container registries, you can use the command:

zenml container-registry flavor list

DefaultContainerRegistry
DockerHubContainerRegistry
GCPContainerRegistry
AzureContainerRegistry
GitHubContainerRegistry
AWSContainerRegistry
orchestrators
step operators
model deployers
Docker
ZenML Scarf