Tags
Use tags to organize tags in ZenML.
Organizing and categorizing your machine learning artifacts and models can streamline your workflow and enhance discoverability. ZenML enables the use of tags as a flexible tool to classify and filter your ML assets.

Tagging different entities
Assigning tags to artifacts
You can tag artifact versions by using the add_tags
utility function:
from zenml import add_tags
add_tags(tags=["my_tag"], artifact="my_artifact_name_or_id")
Alternatively, you can tag an artifact by using CLI as well:
zenml artifacts update my_artifact -t my_tag
Assigning tags to artifact versions
In order to tag an artifact through the Python SDK, you can use either use
the ArtifactConfig
object:
from typing import Annotated
import pandas as pd
from zenml import step, ArtifactConfig
@step
def data_loader() -> (
Annotated[pd.DataFrame, ArtifactConfig(name="my_output", tags=["my_tag"])]
):
...
or the add_tags
utility function:
from zenml import add_tags
# Automatic tagging to an artifact version within a step execution
## A step with a single output
add_tags(tags=["my_tag"], infer_artifact=True)
## A step with multiple outputs (need to specify the output name)
add_tags(tags=["my_tag"], artifact_name="my_output", infer_artifact=True)
# Manual tagging to an artifact version (can happen in a step or outside of it)
## By specifying the artifact name and version
add_tags(tags=["my_tag"], artifact_name="my_output", artifact_version="v1")
## By specifying the artifact version ID
add_tags(tags=["my_tag"], artifact_version_id="artifact_version_uuid")
Moreover, you can tag an artifact version by using the CLI:
# Tag the artifact version
zenml artifacts versions update iris_dataset raw_2023 -t sklearn
Assigning tags to pipelines
Assigning tags to pipelines is only possible through the Python SDK and you can use the add_tags
utility function:
from zenml import add_tags
add_tags(tags=["my_tag"], pipeline="pipeline_name_or_id")
Assigning tags to runs
To assign tags to a pipeline run in ZenML, you can use the add_tags
utility function:
from zenml import add_tags
# Manual tagging to a run
add_tags(tags=["my_tag"], run="run_name_or_id")
Alternatively, you can use the same function within a step without specifying any arguments, which will automatically tag the run:
from zenml import step, add_tags
@step
def my_step():
add_tags(tags=["my_tag"])
You can also use the pipeline decorator to tag the run:
from zenml import pipeline
@pipeline(tags=["my_tag"])
def my_pipeline():
...
Assigning tags to models and model versions
When creating a model version using the Model
object, you can specify tags as key-value pairs that will be attached to the model version upon creation.
During pipeline run a model can be also implicitly created (if not exists), in such cases it will not get the tags
from the Model
class.
from zenml import Model
# Create a model version with tags
model = Model(
name="iris_classifier",
version="1.0.0",
tags=["experiment", "v1", "classification-task"],
)
# Use this tagged model in your steps and pipelines as needed
from zenml import pipeline
@pipeline(model=model)
def my_pipeline(...):
...
You can also assign tags when creating or updating models with the Python SDK:
from zenml import Model
from zenml.client import Client
# Create or register a new model with tags
Client().create_model(
name="iris_logistic_regression",
tags=["classification", "iris-dataset"],
)
# Create or register a new model version also with tags
Client().create_model_version(
model_name_or_id="iris_logistic_regression",
name="2",
tags=["version-1", "experiment-42"],
)
To add tags to existing models and their versions using the ZenML CLI, you can use the following commands:
# Tag an existing model
zenml model update iris_logistic_regression --tag "classification"
# Tag a specific model version
zenml model version update iris_logistic_regression 2 --tag "experiment3"
Assigning tags to run templates
Assigning tags to run templates is only possible through the Python SDK and you can use the add_tags
utility function:
from zenml import add_tags
add_tags(tags=["my_tag"], run_template="run_template_name_or_id")
Advanced Usage
ZenML provides several advanced tagging features to help you better organize and manage your ML assets.
Exclusive Tags
Exclusive tags are special tags that can be associated with only one instance of a specific entity type within a certain scope at a time. When you apply an exclusive tag to a new entity, it's automatically removed from any previous entity of the same type that had this tag. Exclusive tags can be used with:
One pipeline run per pipeline
One run template per pipeline
One artifact version per artifact
The recommended way to create exclusive tags is using the Tag
object:
from zenml import pipeline, Tag
@pipeline(tags=["not_an_exclusive_tag", Tag(name="an_exclusive_tag", exclusive=True)])
def my_pipeline():
...
Alternatively, you can also create an exclusive tag separately and use it later:
from zenml.client import Client
from zenml import pipeline
Client().create_tag(name="an_exclusive_tag", exclusive=True)
@pipeline(tags=["an_exclusive_tag"])
def my_pipeline():
...
The exclusive
parameter belongs to the configuration of the tag and this information is stored in the backend. This means, that it will not lose its exclusive
functionality even if it is being used without the explicit exclusive=True
parameter in future calls.
Cascade Tags
Cascade tags allow you to associate a tag from a pipeline with all artifact versions created during its execution.
from zenml import pipeline, Tag
@pipeline(tags=["normal_tag", Tag(name="cascade_tag", cascade=True)])
def my_pipeline():
...
When this pipeline runs, the cascade_tag
will be automatically applied to all artifact versions created during the pipeline execution.
Unlike the exclusive
parameter, the cascade
parameter is a runtime configuration and does not get stored with the tag
object. This means that the tag will not have its cascade
functionality if it is not used with the cascade=True
parameter in future calls.
Filtering
ZenML allows you to filter taggable objects using multiple tag conditions:
from zenml import add_tags
from zenml.client import Client
# Add tags to a pipeline
add_tags(tags=["one", "two", "three"], pipeline="my_pipeline")
# Will return `my_pipeline`
Client().list_pipelines(tags=["contains:wo", "startswith:t", "equals:three"])
# Will not return `my_pipeline`
Client().list_pipelines(tags=["contains:wo", "startswith:t", "equals:four"])
The example above shows how you can use multiple tag conditions to filter an entity. In ZenML, the default logical operator is AND
, which means that the entity will be returned only if there is at least one tag that matches all the conditions.
Removing Tags
Similar to the add_tags
utility function, you can use the remove_tags
utility function to remove tags from an entity.
from zenml.utils.tag_utils import remove_tags
# Remove tags from a pipeline
remove_tags(tags=["one", "two"], pipeline="my_pipeline")
# Remove tags from an artifact
remove_tags(tags=["three"], artifact="my_artifact")

Last updated
Was this helpful?