Glossary
Glossary of terminology used in ZenML

Annotator

Annotators are a stack component that enables the use of data annotation as part of your ZenML stack and pipelines. You can use the associated CLI command to launch annotation, configure your datasets and get stats on how many labeled tasks you have ready for use.

Artifact

Artifacts are the data that power your experimentation and model training. It is actually steps that produce artifacts, which are then stored in the artifact store.
Artifacts can be serialized and deserialized (i.e. written and read from the Artifact Store) in different ways like TFRecords or saved model pickles, depending on what the step produces.The serialization and deserialization logic of artifacts is defined by Materializers.

Artifact Store

An artifact store is a place where artifacts are stored. These artifacts may have been produced by the pipeline steps, or they may be the data first ingested into a pipeline via an ingestion step.

CLI

Our command-line tool is your entry point into ZenML. You install this tool and use it to set up and configure your repository to work with ZenML. A single init command serves to get you started, and then you can provision the infrastructure that you wish to work with using the stack register command with the relevant arguments passed in.

Container Registry

A container registry is a store for (Docker) containers. A ZenML workflow involving a container registry would see you spinning up a Kubernetes cluster and then deploying a pipeline to be run on Kubeflow Pipelines. As part of the deployment to the cluster, the ZenML base image would be downloaded (from a cloud container registry) and used as the basis for the deployed 'run'. When you are running a local Kubeflow stack, you would therefore have a local container registry which stores the container images you create that bundle up your pipeline code. These images would in turn be built on top of a base image or custom image of your choice.

DAG

Pipelines are traditionally represented as DAGs. DAG is an acronym for Directed Acyclic Graph.
  • Directed, because the nodes of the graph (i.e. the steps of a pipeline), have a sequence. Nodes do not exist as free-standing entities in this way.
  • Acyclic, because there must be one (or more) straight paths through the graph from the beginning to the end. It is acyclic because the graph doesn't loop back on itself at any point.
  • Graph, because the steps of the pipeline are represented as nodes in a graph.
ZenML follows this paradigm and it is a useful mental model to have in your head when thinking about how the pieces of your pipeline get executed and how dependencies between the different stages are managed.

Integrations

An integration is a third-party tool or platform that implements a ZenML abstraction. A tool can implement many abstractions and therefore an integration can have different entrypoints for the user. We have a consistently updated integrations page which shows all current integrations supported by the ZenML core team here. However, as ZenML is a framework users are encouraged to use these as a guideline and implement their own integrations by extending the various ZenML abstractions.

Materializers

A materializer defines how and where Artifacts live in between steps. It is used to convert a ZenML artifact into a specific format. They are most often used to handle the input or output of ZenML steps, and can be extended by building on the BaseMaterializer class. We care about this because steps are not just isolated pieces of work; they are linked together and the outputs of one step might well be the inputs of the next.
We have some built-in ways to serialize and deserialize the data flowing between steps. Of course, if you are using some library or tool which doesn't work with our built-in options, you can write your own custom materializer to ensure that your data can be passed from step to step in this way. We use our fileio utilities to do the disk operations without needing to be concerned with whether we're operating on a local or cloud machine.

Metadata

Metadata are the pieces of information tracked about the pipelines, experiments and configurations that you are running with ZenML. Metadata are stored inside the metadata store.

Metadata Store

The configuration of each pipeline, step and produced artifacts are all tracked within the metadata store. The metadata store is an SQL database, and can be sqlite or mysql.

Orchestrator

An orchestrator manages the running of each step of the pipeline, administering the actual pipeline runs. You can think of it as the 'root' of any pipeline job that you run during your experimentation.

Parameter

When we think about steps as functions, we know they receive input in the form of artifacts. We also know that they produce output (also in the form of artifacts, stored in the artifact store). But steps also take parameters. The parameters that you pass into the steps are also (helpfully!) stored in the metadata store. This helps freeze the iterations of your experimentation workflow in time, so you can return to them exactly as you ran them.

Pipeline

Pipelines are designed as basic Python functions. They are created by using decorators appropriate to the specific use case you have. The moment it is run, a pipeline is compiled and passed directly to the orchestrator, to be run in the orchestrator environment.
Within your repository, you will have one or more pipelines as part of your experimentation workflow. A ZenML pipeline is a sequence of tasks that execute in a specific order and yield artifacts. The artifacts are stored within the artifact store and indexed via the metadata store. Each individual task within a pipeline is known as a step.

Repository

Every ZenML project starts inside a ZenML repository and, it is at the core of all ZenML activity. Every action that can be executed within ZenML must take place within such a repository. ZenML repositories are denoted by a local .zen folder in your project root where various information about your local configuration lives, e.g., the active Stack that you are using to run pipelines, is stored.

Runner Scripts

A runner script is a Python file, usually called run.py and located at the root of a ZenML repository, which has the code to actually create a pipeline run. The code usually looks like this:
from pipelines.my_pipeline import my_pipeline
from steps.step_1 import step_1
if __name__ == "__main__":
p = my_pipeline(
step_1=step_1(),
)
p.run()

Secret

A ZenML Secret is a grouping of key-value pairs. These are accessed and administered via the ZenML Secret Manager (a stack component).
Secrets are distinguished by having different schemas. An AWS SecretSchema, for example, has key-value pairs for AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY as well as an optional AWS_SESSION_TOKEN. If you don't specify a schema at the point of registration, ZenML will set the schema as ArbitrarySecretSchema, a kind of default schema where things that aren't attached to a grouping can be stored.

Secrets Manager

Most projects involving either cloud infrastructure or of a certain complexity will involve secrets of some kind. You use secrets, for example, when connecting to AWS, which requires an access_key_id and a secret_access_key which it (usually) stores in your ~/.aws/credentials file.
You might find you need to access those secrets from within your Kubernetes cluster as it runs individual steps, or you might just want a centralized location for the storage of secrets across your project. ZenML offers a local secrets manager and an integration with the managed AWS Secrets Manager.

Stack

A stack is made up of the following three core components:
  • An Artifact Store
  • A Metadata Store
  • An Orchestrator
A ZenML stack also happens to be a Pydantic BaseSettings class, which means that there are multiple ways to use it.
zenml stack register STACK_NAME \
-m METADATA_STORE_NAME \
-a ARTIFACT_STORE_NAME \
-o ORCHESTRATOR_NAME

Step

A step is a single piece or stage of a ZenML pipeline. Think of each step as being one of the nodes of the DAG. Steps are responsible for one aspect of processing or interacting with the data / artifacts in the pipeline.